Carbon Capture Utilisation and Storage (CCUS): Knowledge gaps and ongoing UK activities

Simon Gant and Zoe Chaplin Risk Team, Health and Safety Executive (HSE) Science and Research Centre, Buxton, UK

PHMSA Pipeline Safety Research and Development Forum, Arlington, Virginia, USA 31st October 2023

© Crown Copyright HSE 2023

PROTECTING PEOPLE HSE AND **PLACES**

- Quick introduction to HSE
- Ongoing CCUS infrastructure projects in the UK
- Scientific knowledge gaps
 - Historical perspective
 - Remaining gaps
- Ongoing/proposed joint industry projects
- Summary

PROTECTING PEOPLE AND **PLACES HSE**

Introduction to HSE

HSE is the UK regulator for workplace health and safety

- Includes onshore/offshore pipelines, chemical/oil/gas infrastructure, offshore platforms etc.
- Activities: evidence gathering, policy development, consultation, regulation, incident investigation, enforcement
- HSE acts as an enabling regulator, supporting the introduction of new technologies _
- 2,400 total staff
- £230M (\$280M) budget: 60% from Government, 40% from external income ____

HSE Science and Research Centre, Buxton, UK

- 400 staff, 550 acre test site
- Scientific support to HSE and other Government departments "Shared research" or joint-industry projects co-funded by HSE Bespoke consultancy on a commercial basis
- _____

PROTECTING PEOPLE HSE AND **PLACES**

PROTECTING PEOPLE UK CCUS Infrastructure Projects AND **PLACES HSE**

- four CCUS clusters capturing 20-30 MtCO₂ by 2030
- by UK Government
- CCUS over next 20 years
- Acorn and Viking CCS

November 2021: HyNet and East Coast Cluster selected as Track 1 projects

March 2023: UK Government Spring Budget announcement of £20 billion for

July 2023: UK Government consultation concluded that Track 2 projects will be

¹https://assets.publishing.service.gov.uk/government/uploads/system/upload

https://eastcoastcluster.co.uk

PROTECTING PEOPLE HSE AND **PLACES**

NEP Partners: BP, Equinor and TotalEnergies

Onshore gas and dense-phase CO_2 pipelines

Two new offshore dense-phase CO₂ pipelines: 16-24 inch diameter

March 2023: Funding awarded for three Track 1 capture plants

Sept 2023: NSTA awarded further licenses to BP and Equinor for 1 GTe CO₂ storage

Due to be operational by 2027

https://hynet.co.uk

PROTECTING PEOPLE HSE AND **PLACES**

HyNet

Initially, gas-phase onshore/offshore CO_2 pipelines with sequestration in depleted natural gas field

40 miles of onshore pipeline, MAOP approximately 42 bar

Later, transition to dense-phase CO_2 pipelines offshore – compression at the coast

Pipelines: 20", 24" and 36" diameter, mixture of repurposed and new

New ENI offshore platform connected to several repurposed normally unmanned installations

Capture plants: cement, refinery, blue hydrogen

Planned to store 10 MtCO₂/yr by 2030

Acorn

https://www.theacornproject.uk/

PROTECTING PEOPLE HSE AND **PLACES**

Partners: Shell, Harbour Energy, Storegga and North Sea Midstream Partners

Capture plants: St Fergus gas complex, SSE and Equinor Peterhead power station, INEOS Grangemouth blue hydrogen plant, ExxonMobil/Shell's Mossmorran facilities

Repurposing of onshore Feeder 10 natural gas pipeline for CO₂ transport

Repurposing of existing Goldeneye, Miller or Atlantic pipelines for CO₂ transport

Final investment decision in 2024

Planned to store at least 5Mt/yr of CO₂ by 2030

https://www.vikingccs.co.uk/

PROTECTING PEOPLE HSE AND **PLACES**

Partners: BP and Harbour Energy

Onshore: new 30 mile dense-phase CO_2 pipeline

Offshore: repurposing existing 70 mile offshore pipeline and new 10 mile spur line

Final investment decision in 2024

Planned to store at least 10Mt/yr of CO₂ by 2030

IChemE SYMPOSIUM SERIES NO. 153

HAZARDS FROM HIGH PRESSURE CARBON DIOXIDE RELEASES DURING CARBON DIOXIDE SEQUESTRATION PROCESSES

Stephen Connolly¹ and Laurence Cusco²

Uncertainties:

- Can we predict extent of hazardous zones?
- Implications of severe Joule-Thomson cooling (embrittlement?)
- Solid CO₂ implications for blowdown (blocking valves?)
- Solid CO₂ particles scouring and erosion (jet cleaning and cutting)
- Solid CO₂ deposition as dry-ice bank (prolonged sublimation)
- Running ductile crack propagation along dense-phase CO_2 pipelines
- Equation of state for CO_2 + impurities for flow assurance modelling
- Corrosion issues: CO_2 + water = carbonic acid, effects of other impurities

PROTECTING PEOPLE HSE AND **PLACES** Initial CCUS safety concerns

© 2007 Crown Copyright

12th International Symposium on Loss Prevention and Safety Promotion in the Process Industries, Loss Prevention 2007, Edinburgh, UK, 22 - 24 May, 2007

https://www.icheme.org/media/17864/cusco_connolly_2007_hazards_from_co2.pdf

Dispersion modelling of (liquid/solid + gas) CO_2 jet releases: how does it behave?

PROTECTING PEOPLE AND **PLACES HSE Remaining CO₂ knowledge gaps**

Fracture propagation

- Brittle fracture due to cooling of CO_2 release that changes the fracture behaviour of steel from ductile to brittle: growth of small punctures into ruptures?
- Long-running ductile fractures for supercritical CO_2 due to net decompression speed of the fluid < fracture propagation speed along the pipe
- Difficult to determine requirements, particularly if impurities are present
- More work done on dense-phase than gaseous; therefore, less certainty in fracture arrest requirements for gaseous CO_2
- Recent publications on running ductile fractures:
 - Skarsvåg et al. (2023) "Towards an engineering tool for the prediction of running ductile fractures in CO_2 pipelines" Process Safety and Environmental Protection 171 (2023) 667–679. https://doi.org/10.1016/j.psep.2023.01.054
 - Cosham et al. (2022) "The decompressed stress level in dense phase carbon dioxide full-scale fracture propagation tests". Proceedings of the 14th International Pipeline Conference IPC2022, 26-30 Sept 2022, Calgary, Canada

Revision of guidance in DNV-RP-F104 and ISO 27913 (TC/265)?

Further CO_2 pipeline rupture experiments to inform guidance?

PROTECTING PEOPLE HSE AND **PLACES** Remaining CO₂ knowledge gaps

Fracture tests

Uncertainty around suitability of Charpy impact test and Drop-Weight Tear Test — (DWTT) to predict fracture resistance

- If water present, other impurities (NOx, SOx) can increase likelihood of corrosion ____ What to do in case of process upset (e.g., CO_2 composition outside specification)? — Inspection and maintenance regimes? ____
- Corrosion highly dependent on presence of free water

PROTECTING PEOPLE HSE AND **PLACES Remaining CO₂ knowledge gaps**

- Venting
 - Dry-ice possible for both gas and dense-phase CO_2 releases Reported that dry-ice has blocked pipeline valves in their open position What valves and/or operating procedures should be used? Venting on offshore platforms: downwards from underside of platform?

 - ____
- Pipeline risk assessment
 - Terrain effects: heavier-than-air CO_2 cloud flowing downhill, collecting in low areas Issues with dispersion models used for risk assessment and emergency planning ____ • Crater source: uncertainty (correlations based on just two experiments) Need to develop fast-running dispersion models that can simulate terrain effects
- - Need experimental data to develop, test and validate these models

PROTECTING PEOPLE HSE AND **PLACES Remaining CO₂ knowledge gaps**

Offshore risk assessment

- Consequences of subsea CO_2 pipeline release or well blowout
 - How much CO_2 is absorbed into the water column?
 - Characteristics of rising plume and zone affected on sea surface

Emergency Response

- Onshore: learning lessons from Satartia Incident ____
 - e.g., use of electric vehicles to evacuate casualties?
 - Coordination between pipeline operators and emergency services
- Offshore

 - Potential impact of dense CO_2 clouds on floating support vessels, ingress of CO_2 into lifeboats • Detection and emergency control systems on platforms handling both hydrocarbons and CO_2

- Quick introduction to HSE
- Ongoing CCUS infrastructure projects in the UK
- Scientific knowledge gaps
 - Historical perspective
 - Remaining gaps
- Ongoing/proposed joint industry projects
 - Summary

PROTECTING PEOPLE AND **PLACES HSE**

PROTECTING PEOPLE HSE AND **PLACES Skylark CO**₂ **Joint Industry Project**

Aims

- To undertake dispersion experiments on CO_2 pipeline releases and venting, including releases from craters and dispersion in sloping/complex terrain
- To run joint collaborative model validation exercises
- To improve emergency preparedness and support first responders
- Work Packages
 - CO₂ pipeline craters and source terms **DNV** Wind-tunnel experiments – University of Arkansas

 - Simple terrain dispersion experiments **DNV**
 - Complex terrain dispersion experiments **DNV**
 - Model inter-comparison and validation **HSE**
 - Emergency response NCEC
 - Venting **DNV**

Cost: approximately \$12m (support of \$6m from UK Government) Timeline: start in summer 2024 for 3 years Contacts: <u>simon.gant@hse.gov.uk</u> daniel.allason@dnv.com

PROTECTING PEOPLE HSE AND **PLACES** SubCO₂ DNV Joint Industry Project

Background – previous phases

- Underwater CO₂ Releases have been done at depths of 3 meters (Phase 1) and 10 meters (Phase 2) in 2016.
- Releases at a depth of 40 meters (Phase 3) are proposed.

16

Phase 2 – 10 meters

Contact: andy.cummings@dnv.com

DNV

PROTECTING PEOPLE HSE AND **PLACES CO₂SafePipe DNV Joint Industry Project**

- Aims
 - To close knowledge gaps identified in the transportation of CO_2 in pipelines
 - Includes consideration of both gas and dense phase CO_2
 - Assess the effect of CO_2 stream composition on corrosion and materials, and the risk of running ductile fracture
 - Update the recommended practice

DNV-RP-F1	04
DNV·GL	
CE	https://www.dnv.com/article/design-and-operated of-co2-pipelines-co2safepipe-240345
Edition November 2017	
on dioxide	

Summary

- CO₂ pipeline knowledge gaps
 - Limited operational experience compared to natural gas pipelines —
 - Issues are common internationally: benefits in working collaboratively ____
 - Some work underway and/or proposed to address the gaps
 - We would be interested to hear about any other work aimed at filling these gaps
- Are cautious approaches necessary in the short term? Do we need clarity on this interim guidance? ____
- Further details of Skylark JIP provided in breakout session

PROTECTING PEOPLE AND **PLACES HSE**

Thank you for listening

- Contact: <u>simon.gant@hse.gov.uk</u>, <u>zoe.chaplin@hse.gov.uk</u>
- policy

The contents of this presentation, including any opinions and/or conclusions expressed, are those of the authors alone and do not necessarily reflect HSE

